• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

Neuromorphic SoC brings AI to the edge and enterprise

September 10, 2018 By Aimee Kalnoskas Leave a Comment

BrainChip Holdings Ltd. announces production of the spiking neural network architecture – the AkidAkida Neuromorphic SoCa Neuromorphic System-on-Chip (NSoC). The Akida NSoC is small, low cost and low power, making it ideal for edge applications such as advanced driver assistance systems (ADAS), autonomous vehicles, drones, vision-guided robotics, surveillance and machine vision systems. Its scalability allows users to network many Akida devices together to perform complex neural network training and inferencing for many markets including agricultural technology (AgTech), cybersecurity and financial technology (FinTech).

“The artificial intelligence acceleration chipset marketplace is expected to surpass US$60 billion by 2025,” said Aditya Kaul, Research Director at Tractica, a leading market intelligence firm with a specialization in AI. “Neuromorphic computing holds significant promise to accelerate AI, especially for low-power applications. As many of the technical hurdles are resolved, the industry will see the deployment of a new class of AI-optimized hardware over the next few years.”

“Despite their best efforts, no other company, large or small, has managed to bring a neuromorphic computing chip to market in production volumes,” said Lou DiNardo, BrainChip CEO. “Akida, which is Greek for ‘spike,’ represents the first in a new breed of hardware solutions for AI. Artificial intelligence at the edge is going to be as significant and prolific as the microcontroller. With the Akida NSoC, BrainChip is forging that path and leading the way. Our recent announcement of the Akida Development Environment is now followed by a detailed architectural description. We are collaborating with major global manufacturers in a multi-market strategy to drive early adoption of the Akida NSoC.

The Akida NSoC uses a pure CMOS logic process, ensuring high yields and low cost. Spiking neural networks (SNNs) are inherently lower power than traditional convolutional neural networks (CNNs), as they replace the math-intensive convolutions and back-propagation training methods with biologically inspired neuron functions and feed-forward training methodologies. BrainChip’s research has determined the optimal neuron model and training methods, bringing unprecedented efficiency and accuracy. Each Akida NSoC has effectively 1.2 million neurons and 10 billion synapses, representing 100 times better efficiency than neuromorphic test chips from Intel and IBM. Comparisons to leading CNN accelerator devices show similar performance gains of an order of magnitude better images/second/watt running industry standard benchmarks such as CIFAR-10 with comparable accuracy.

The Akida NSoC is designed for use as a stand-alone embedded accelerator or as a co-processor. It includes sensor interfaces for traditional pixel-based imaging, dynamic vision sensors (DVS), Lidar, audio, and analog signals. It also has high-speed data interfaces such as PCI-Express, USB, and Ethernet. Embedded in the NSoC are data-to-spike converters designed to optimally convert popular data formats into spikes to train and be processed by the Akida Neuron Fabric.

The Akida Development Environment is available now for early access customers to begin the creation, training, and testing of spiking neural networks targeting the Akida NSoC. The Akida NSoC is expected to begin sampling in Q3 2019. For more information please see http://www.brainchip.ai.

Filed Under: Applications, Artificial intelligence/ML, Connectivity, microcontroller Tagged With: brainchipholdingsltd.

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Navigating the EU Cyber Resilience Act: a manufacturer’s perspective

The intelligent Edge: powering next-gen Edge AI applications

Engineering harmony: solving the multiprotocol puzzle in IoT device design

What’s slowing down Edge AI? It’s not compute, it’s data movement

Five challenges for developing next-generation ADAS and autonomous vehicles

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Power Efficiency
Discover proven strategies for power conversion, wide bandgap devices, and motor control — balancing performance, cost, and sustainability across industrial, automotive, and IoT systems.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy