• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

Antenna eval board targets low-band through cellular LPWA apps

January 6, 2022 By Aimee Kalnoskas Leave a Comment

KYOCERA AVX is launching the industry’s first evaluation board for testing antenna band switching performance at CES 2022 in Las Vegas. The new Antenna Band Switching Evaluation Board (1004795-EC646-01) is comprised of standard products including an embedded, universal broadband, FR4 LTE/LPWA antenna (1004795), an Ether Switch & Tune chipset (EC646) for band switching or aperture tuning, a battery holder to power the RF switch, a female SMA connector, and a small (45.5 x 60mm) evaluation board optimized for testing the antenna performance of standard-sized IoT devices. It is engineered to reduce the number of device design iterations, improve accuracy, and hasten product time-to-market for low- and high-band frequency (968–960MHz and 1.71–2.17GHz) 4G, 5G, broadband LTE, LTE Cat-M, NB-IoT, and cellular LPWA applications including cellular headsets and tablets, handheld electronics, embedded designs, telematics, tracking, and on-board diagnostics (OBD-II) systems, and industrial M2M, IoT, healthcare, home automation, and smart grid devices.

IoT devices tend to be rather small, and compact, densely populated PCBs can significantly degrade the bandwidth and efficiency performance of the passive monopole and Planar Inverted-F antennas (PIFAs) that are widely employed in mobile phones and other modern RF electronics but are susceptible to position-based performance changes and interacting with their surroundings, which can further complicate high-density PCB layouts. Active antennas capable of band switching, also known as aperture tuning, cover a wider frequency range than passive antennas by actively switching between frequency bands. In addition, active antennas capable of covering the same frequencies as passive antennas have smaller form factors better suited to compact, high-density devices and, at equal size, will cover more frequency bands than passive antennas. Further, KYOCERA AVX active antennas, like the embedded, universal broadband, FR4 LTE antenna employed in the new Antenna Band Switching Evaluation Board, are equipped with patented Isolated Magnetic Dipole (IMD) technology, which delivers unique size and performance advantages including reduced ground plane and keep-out area size requirements for greater design flexibility, superior RF field containment for reduced interaction with surrounding components, and higher efficiency, gain, isolation, and directivity characteristics than competing solutions for higher-reliability connectivity with better return loss and minimal interference.

The new KYOCERA AVX Antenna Band Switching Evaluation Board is RoHS compliant, measures 45.5mm x 60.0mm, weighs 10.5 grams, and is rated for operating temperatures spanning -40°C to +85°C. It exhibits less than -2.5dB return loss, 50Ω unbalanced feed-point impedance, linear polarization, and 2.0W continuous wave (CW) power handling. At low-band frequencies, the Antenna Band Switching Evaluation Board exhibits peak gain ranging from -3.67dBi to -1.75dBi and average efficiency ranging from 18–30%, specifically: -3.67dBi and 18% from 890–960MHz (RF1), -2.77dBi and 22% from 700–800MHz (RF2), -2.76dBi and 20% from 700–750MHz (RF3), and -1.75dBi and 30% from 790–890MHz (RF4). At high-band frequencies spanning 1.71–2.17GHz, it exhibits peak 1.95dBi and 60% at RF3.

“The new KYOCERA AVX Antenna Band Switching Evaluation Board is the first of its kind available in the global electronics market and will help RF design engineers optimize antenna size, performance, and emissions, reduce the number of device design iterations, more easily satisfy customer and regulatory specifications, and hasten product time-to-market,” said Carmen Redondo, Global Marketing Manager, Antennas, KYOCERA AVX. “It is also optimally sized for testing the performance of IoT devices, equipped with proven KYOCERA AVX components including a high-performance, universal broadband, FR4 LTE antenna with patented IMD technology and an Ether Switch & Tune chipset, and ideal for testing consumer electronics, industrial, medical, IoT, embedded systems, and utility market applications including cellular headsets and tablets, handheld electronics, embedded designs, telematics, tracking, and on-board diagnostics (OBD-II) systems, and industrial M2M, IoT, healthcare, home automation, and smart grid devices with operating frequencies extending from 968–960MHz and 1.71–2.17GHz.”

Additional benefits of the Antenna Band Switching Evaluation Board include the ability to be trimmed down or extended with copper tape to better match the physical size of test devices with smaller or larger form factors, compatibility with KYOCERA AVX’s 1004796 embedded, universal broadband, FR4 LTE/LPWA antenna provided that the original PCB layout is mirrored, and compatibility with custom antenna designs given the assistance of technical KYOCERA AVX personnel.

KYOCERA AVX Antenna Band Switching Evaluation Boards are packaged in trays and shipped in sealed packages to help maintain optimal storage temperature and humidity conditions, which span +5°C to +40°C and 45–75% humidity. Lead-time is currently12 weeks.

You may also like:


  • What is Wi-Fi HaLow? Players and future

  • What is Wi-Fi HaLow? Part 1

  • Mioty LPWAN – what’s it good for?

  • How does mioty compare with other flavors of LPWAN?

  • What is mioty telegram splitting LPWAN?

Filed Under: Applications, Evaluation Boards, IoT, Telecommunications Tagged With: kyoceraavx

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

What’s new with Matter: how Matter 1.4 is reshaping interoperability and energy management

Edge AI: Revolutionizing real-time data processing and automation

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

RSS Current EDABoard.com discussions

  • What is the purpose of the diode from gate to GND in normal Colpitts oscillator Circuits?
  • Antiparallel Schottky Diodes VDI-Load Pull
  • interfacing gsm and gps in proteus
  • 12VAC to 12VDC 5A on 250ft 12AWG
  • My array have wrong radiation pattern

RSS Current Electro-Tech-Online.com Discussions

  • how to work on pcbs that are thick
  • Actin group needed for effective PCB software tutorials
  • Kawai KDP 80 Electronic Piano Dead
  • Doing consultancy work and the Tax situation?
  • How to repair this plug in connector where wires came loose

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy