• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

MCUs target IoT apps, consume uA/MHz in active mode, 1.6 mA in standby mode

December 9, 2020 By Redding Traiger Leave a Comment

Renesas Electronics Corporation expanded its RA4 Series microcontrollers (MCUs) with the new 32-bit RA4M3 Group of MCUs. The RA4M3 MCUs boost operating performance up to 100 MHz using the Arm Cortex-M33 core based on Armv8-M architecture. Featuring industry-leading performance, Arm TrustZone technology, Renesas’ Secure Crypto Engine, and a suite of new memory enhancements, the RA4M3 Group makes it easy to develop safe and secure IoT edge devices for low-power applications, such as security, metering, industrial, and HVAC applications.

The RA4M3 Group is designed for low-power IoT applications that require a balance of high performance, strong security, and higher memory. The RA4M3 MCUs combine TrustZone technology with Renesas’ enhanced Secure Crypto Engine, enabling customers to realize secure element functionality in a wide variety of IoT designs. The Secure Crypto Engine incorporates multiple symmetric and asymmetric cryptography accelerators, advanced key management, security lifecycle management, power analysis resistance, and tamper detection.

The RA4M3 MCUs drive power consumption down to 119uA/MHz in active mode running CoreMark from flash memory and 1.6mA in standby mode with standby wakeup times as fast as 30 µs – a critical element for IoT applications operating in the field for extended periods. For memory-intense applications, designers can combine Quad-SPI and SD-card interfaces with the MCUs’ built-in embedded memory to increase capacity. The background operation and Flash Bank SWAP option are ideal for memory-optimized firmware updates running in the background. The increased embedded RAM with parity/ECC also makes the RA4M3 MCUs ideal for safety-critical applications. The RA4M3 MCUs also feature several integrated features to lower BOM costs, including capacitive touch sensing, embedded flash memory densities up to 1 MB, and analog, communications, and memory peripherals.

Key Features of the RA4M3 Group include: 100 MHz Arm Cortex-M33 with TrustZone technology on a 40nm process; Integrated 1 MB flash memory, 128 KB RAM, 8 KB Data Flash, and 1 KB stand-by SRAM; Low power consumption delivering an operating current of 119 μA/MHz in active mode and 1.6 mA standby current with 30 µs wakeup time; Background operation and Block SWAP function for the flash memory; Capacitive touch sensing unit; Multiple interfaces including Quad SPI and SDHI memory interfaces, SSI, USB2.0 Full Speed, SCI, and SPI/I2C; Scalable from 64-pin to 144-pin LQFP packages (including LGA- and BGA-ready options)

Together, the RA4M3 Group with Flexible Software Package (FSP) allows customers to re-use their legacy code and combine it with software from partners across the vast Arm ecosystem and the RA partner ecosystem to speed implementation of complex connectivity and security functions. The FSP includes FreeRTOS and middleware, offering a premium device-to-cloud option for developers. These out-of-box options can be easily replaced and expanded with any other RTOS or middleware.

The FSP provides a host of efficiency-enhancing tools for developing projects targeting the RA4M3 MCUs. The e2 studio Integrated Development Environment provides a familiar development cockpit from which the key steps of project creation, module selection and configuration, code development, code generation, and debugging are all managed. The FSP uses a GUI to simplify the process and dramatically accelerate the development process.

The RA4M3 MCUs are available now from Renesas’ worldwide distributors.

You may also like:


  • Functional safety for embedded systems – Virtual Roundtable (part 2…

  • Security for embedded systems – Virtual Roundtable (part 1 of…
  • Embedded systems software and programming
    Embedded systems software and programming for a safer world

  • Securing embedded systems in a hostile world

  • Managing power consumption and dissipation in embedded systems for a…

Filed Under: 32-bit, Connectivity, Industrial, IoT, Memory, microcontroller, Security, Tools Tagged With: renesaselectronicscorporation

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

What’s new with Matter: how Matter 1.4 is reshaping interoperability and energy management

Edge AI: Revolutionizing real-time data processing and automation

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

RSS Current EDABoard.com discussions

  • Antiparallel Schottky Diodes VDI-Load Pull
  • interfacing gsm and gps in proteus
  • 12VAC to 12VDC 5A on 250ft 12AWG
  • What is the purpose of the diode from gate to GND in normal Colpitts oscillator Circuits?
  • My array have wrong radiation pattern

RSS Current Electro-Tech-Online.com Discussions

  • Actin group needed for effective PCB software tutorials
  • Kawai KDP 80 Electronic Piano Dead
  • Doing consultancy work and the Tax situation?
  • How to repair this plug in connector where wires came loose
  • Lightbox circuit

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy