• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

Intelligent motor control incorporates embedded AI to detect failure

January 22, 2019 By Aimee Kalnoskas Leave a Comment

embedded AIRenesas Electronics Corporation announced the launch of its Failure Detection e-AI Solution for motor-equipped home appliances, featuring the Renesas RX66T 32-bit microcontroller (MCU). This solution with embedded AI (e-AI) enables failure detection of home appliances — such as refrigerators, air conditioners, and washing machines — due to motor abnormality. Property data showing the motor’s current or rotation rate status can be used directly for abnormality detection, making it possible to implement both motor control and e-AI–based abnormality detection with a single MCU. Using the RX66T eliminates the need for additional sensors, thereby reducing a customer’s bill of materials (BOM) cost.

When a home appliance malfunctions, the motor operation typically appears abnormal when running and being monitored for fault detection in real-time. By implementing e-AI-based motor control-based detection, the failure detection results can be applied not only to trigger alarms when a fault occurs, but also for preventive maintenance. For example, e-AI can estimate when repairs and maintenance should be performed, and it can identify the fault locations. This capability provides home appliance manufacturers the means to boost maintenance operations efficiency and improve product safety by adding functionality that predicts faults before they occur in their products.

The Renesas Failure Detection e-AI Solution for motor-equipped home appliances can control up to four motors because it utilizes the high-performance RX66T MCU. Today’s washing machines typically incorporate three motors: One to rotate the washing tub, one to drive the water circulation pump, and one to drive the drying fan. The Renesas Failure Detection e-AI Solution can therefore be used to control these three motors with a single RX66T chip while at the same time monitoring all three motors for faults.

The new solution utilizes the Renesas Motor Control Evaluation System and an RX66T CPU card. This hardware is combined with a set of sample program files that run on the RX66T MCU as well as a GUI tool that enables collecting and analyzing property data indicating motor states. In order to detect faults, it is necessary to learn the characteristics of the normal state. Using the GUI tool, system engineers can immediately begin developing AI learning and optimized fault detection functionality. Once the AI models are developed, the e-AI development environment (composed of an e-AI Translator, e-AI Checker, and e-AI Importer) can be easily used to import the learned AI models into the RX66T.

The Failure Detection e-AI Solution for Motor-Equipped Home Appliances is available now.

 

Filed Under: Applications, Artificial intelligence/ML, Industrial, microcontroller Tagged With: renesaselectronicscorporation

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Engineering harmony: solving the multiprotocol puzzle in IoT device design

What’s slowing down Edge AI? It’s not compute, it’s data movement

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Embedded Security
This Tech ToolBox highlights the innovations driving embedded systems, as well as the strategies needed to build resilient, future-ready technologies.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy