• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

New core targets a wide range of embedded applications in Industrial IoT

October 25, 2018 By Aimee Kalnoskas Leave a Comment

Renesas Electronics Corporation announced the development of its third-generation 32-bit RX CPU core, the RXv3. The RXv3 CPU core will be employed in Renesas’ new RX microcontroller (MCU) families that begin rolling out at the end of 2018. The new MCUs are designed to address the real-time performance and enhanced stability required by motor control and industrial applications in next-generation smart factory, smart home and smart infrastructure equipment.

The innovative RXv3 core boosts the proven Renesas RX CPU core architecture with up to 5.8 CoreMark/MHz, as measured by EEMBC® Benchmarks, to deliver industry-leading performance, power efficiency, and responsiveness. The RXv3 core is backwards compatible with the RXv2 and RXv1 CPU cores in Renesas’ current 32-bit RX MCU families. Binary compatibility using the same CPU core instruction sets ensures that applications written for the previous-generation RXv2 and RXv1 cores carry forward to the RXv3-based MCUs. Designers working with RXv3-based MCUs can also take advantage of the robust Renesas RX development ecosystem to develop their embedded systems.

RXv3 core

The unique RX CPU core combines a design optimized for power efficiency and a fabrication process producing excellent performance. The new RXv3 CPU core is primarily a CISC (Complex Instruction Set Computer) architecture that offers significant advantages over the RISC (Reduced Instruction Set Computer) architecture in terms of code density. RXv3 utilizes a pipeline to deliver high instructions per cycle (IPC) performance comparable to RISC. The new RXv3 core builds on the proven RXv2 architecture with an enhanced pipeline, options for register bank save functions and double precision floating-point unit (FPU) capabilities for the highest computing performance, power and code efficiency.

An enhanced RX core five-stage superscalar architecture enables the pipeline to execute more instructions simultaneously while maintaining excellent power efficiency. The RXv3 core will enable the first new RX600 MCUs to achieve 44.8 CoreMark/mA with an energy-saving cache design that reduces both access time and power consumption during on-chip flash memory reads, such as instruction fetch

The RXv3 core also  achieves significantly faster interrupt response times with a new option for single-cycle register saves. Using dedicated instruction and a save register bank with up to 256 banks, designers can minimize the interrupt handling overhead required for embedded systems operating in real-time applications such as motor control. The RTOS context switch time is up to 20 percent faster with the register bank save function

Renesas plans to start sampling shipments of RXv3-based MCUs before the end of Q4 2018.

Filed Under: Applications, Industrial, IoT, microcontroller Tagged With: renesaselectronicscorporation

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

What’s new with Matter: how Matter 1.4 is reshaping interoperability and energy management

Edge AI: Revolutionizing real-time data processing and automation

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

RSS Current EDABoard.com discussions

  • How to calculate Gate Driver's propagation delay time?
  • Bidirectional data bus
  • Editing posts
  • avoiding mixer compression when acting as a phase detector
  • Crude Powerline FSK comms literally shorts the power bus at a certain frequency?

RSS Current Electro-Tech-Online.com Discussions

  • RS485 bus: common ground wire needed or not?
  • Kawai KDP 80 Electronic Piano Dead
  • Good Eats
  • What part is this marked .AC ?
  • Photo interrupter Connections

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy