• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

AI processors for IoT consume less than 5 mW

March 8, 2018 By Aimee Kalnoskas Leave a Comment

AI processorsKneron, a provider of edge Artificial Intelligence (AI) solutions, today announced its AI processors Kneron NPU IP Series for edge devices. The Kneron NPU IP Series includes three products: the KDP 300 ultra-low power version, the KDP 500 standard version, and the KDP 700 high-performance version, supporting various AI applications in smarthome, smart surveillance, smartphones, and IoT devices. These low power processors are small in size while offering strong computing capability. Unlike the other AI processors on the market that often consume several watts, Kneron NPU Series consumes under 0.5W, and the KDP 300 designed for facial recognition in smartphones is even less than 5mW (Note 1).

Kneron NPU IP Series’ power consumption is under 0.5W, and the KDP 300 ultra-low power version even consumes less than 5mW. The energy efficiency of the entire product line is higher than 1.5 TOPS/W (Note 2). Thanks to a number of exclusive technologies, these products can provide excellent computational performance at low power consumption. By adopting filter decomposition technology, it can divide a large-scale convolutional computing block into a number of smaller ones to compute parallelly. Together with the reconfigurable convolution accelerating technology, the computing results from the small blocks will be integrated to achieve better overall computing performance. Through Kneron’s advanced model compression technology, the size of the unoptimized models can be shrunk a few dozen times. The multi-level caching technique reduces the use of CPU resources and further improves the overall operational efficiency.

In addition, Kneron NPU can be combined with Kneron’s visual recognition software to offer a total solution for real-time identification analysis and responsiveness, satisfying high security and privacy requirements. Because of the tight integration of software and hardware, the total solution is smaller in size and consumes less power, conducive to rapid product development.

Key features

1. NPU IP- KDP 300 Ultra-low Power Version
KDP 300 supports faster and a more accurate 3D live facial recognition through image analysis from 3D structured light and dual-lens cameras. KDP 300 is also suitable for edge devices that require ultra-low power consumption. The power, including computing and SRAM (Static Random-Access Memory), is less than 5mW.

2. NPU IP- KDP 500 Standard Version
KDP 500 can do real-time recognition, analysis, and deep learning for mass faces, hand and body gestures, which is ideal for applications in smart home and smart surveillance. Its computing capacity is up to 152 GOPS (500MHz) (billion operations per second), while sustaining 100mW power consumption.

3. NPU IP- KDP 700 High-performance Version
KDP 700 supports more advanced and complex AI computing, as well as deep learning inference for high-end smartphones, robots, drones, and smart surveillance devices. It is currently in the development stage and is expected to offer superior computing capacity with peak throughput up to 4.4 TOPS(1GHz) (trillion operations per second) while keeping the power consumption 300~500mW.

Kneron, 6725 Mesa Ridge Road, Suite 102, San Diego, CA 92121, Carol HSU. Phone: +886-2-27955229

Filed Under: Applications, Artificial intelligence, FAQ, microcontroller Tagged With: kneron

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

What’s new with Matter: how Matter 1.4 is reshaping interoperability and energy management

Edge AI: Revolutionizing real-time data processing and automation

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy