• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

Digital-twin simulation includes auto hardware/software sub-systems, full vehicle models, sensor data, traffic flows and more

May 15, 2019 By Aimee Kalnoskas Leave a Comment

Siemens has introduced the PAVE360 pre-silicon autonomous validation environment — a program established to enable and accelerate the development of innovative autonomous vehicle platforms. PAVE360 provides a comprehensive environment for multi-supplier collaboration across the automotive ecosystem for the development of next-generation automotive chips. PAVE360 also extends digital twin simulation beyond processors to include automotive hardware and software sub-systems, full vehicle models, fusion of sensor data, traffic flows and even the simulation of smart cities through which self-driving cars will ultimately travel.

PAVE360

PAVE360 enables capabilities for full, closed-loop validation of the sensing/decision-making/actuating paradigm at the heart of all automated driving systems. This principle hinges on rigorous pre-silicon validation of deterministic (rules-based) and non-deterministic (AI-based) approaches to safe self-driving in the context of the full digital twin.

As advances in processing continue to play an increasingly prominent role in automotive evolution, carmakers are turning to custom silicon designs to deliver the “just right” blends of cost, power, performance and advanced features necessary to enable an autonomous future.

With PAVE360, chip design can be democratized, enabling carmakers, chipmakers, tier one suppliers, software houses and other vendors to collaborate on the development and customization of extraordinarily complex silicon devices for autonomous vehicles. PAVE360 delivers a robust platform for this collaboration, helping to speed chip design and software validation, and enabling the creation of model-specific silicon for the first-generation of self-driving cars.

PAVE360 establishes a design-simulation-emulation solution that scales from individual blocks of a system-on-chip’s (SoC’s) IP, to hardware and software on the SoCs, to vehicle subsystems, and up through deployment of vehicles in smart cities – a true “chip-to-city” approach based on the increasing digitalization of the automotive industry.

Already on display in the Center for Practical Autonomy Lab in Novi, Michigan, PAVE360 is designed to serve as the industry-standard verification and validation program for modeling solutions in the automated driving ecosystem.

 

You may also like:


  • Image gallery: Technology on display at ADAS & Autonomous Vehicles…

Filed Under: Applications, Automotive, microcontroller, Software Tagged With: siemens

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

What’s new with Matter: how Matter 1.4 is reshaping interoperability and energy management

Edge AI: Revolutionizing real-time data processing and automation

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy