• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

Low-power Arm Cortex-M4 processors carry large embedded memories

April 4, 2018 By Aimee Kalnoskas Leave a Comment

Arm Cortex-M4 processorsDesigners of internet of things (IoT) sensors, environmental sensors, smartwatches, medical/preventive health wearables, and other size-constrained devices can now increase battery life and functionality using the ultra-low power MAX32660 and MAX32652 microcontrollers from Maxim Integrated Products, Inc. These microcontrollers (MCUs) are based on the Arm Cortex-M4 processors and provide designers the means to develop advanced applications under restrictive power constraints. Maxim’s family of DARWIN MCUs combine our wearable-grade power technology with the biggest embedded memories in their class and some of the most advanced embedded security in the world.

Memory, size, power consumption, and processing power are critical features for engineers designing more complex algorithms for smarter IoT applications. Existing solutions today offer two extremes – they either have decent power consumption but limited processing and memory capabilities, or they have higher power consumption with more powerful processors and more memory. The MAX32660 offers designers a sweet spot, giving them access to enough memory to run some advanced algorithms and manage sensors (256KB flash and 96KB SRAM). They also offer excellent power performance (down to 50 µW/MHz), impressively small size (1.6mm x 1.6mm in WLP package), and a cost-effective price point. Engineers can now build more intelligent sensors and systems that are smaller and lower in cost, while also providing a longer battery life.

As IoT devices become more intelligent, they start requiring more memory and additional embedded processors which can each be very expensive and power hungry. The MAX32652 offers an alternative for designers who can benefit from the low power consumption of an embedded microcontroller with the capabilities of a higher powered applications processor. With 3MB flash and 1MB SRAM integrated on-chip and running up to 120 MHz, the MAX32652 offers a highly-integrated solution for IoT devices that strive to do more processing and provide more intelligence. Integrated high-speed peripherals such as high-speed USB 2.0, secure digital (SD) card controller, a thin-film transistor (TFT) display, and a complete security engine position the MAX32652 as the low-power brain for advanced IoT devices. With the added capability to run from external memories over HyperBus or XcellaBus, the MAX32652 can be designed to do even more tomorrow, providing designers a future-proof memory architecture and anticipating the increasing demands of smart devices.

 

The MAX32660 and MAX32652 are both available at Maxim’s website and select authorized distributors. MAX32660EVKIT# and MAX32652EVKIT# evaluation kits are also both available at Maxim’s website.

Filed Under: Applications, Embedded, Hardware, IoT, Medical, Wearables, Wireless Tagged With: maximintegratedproducts

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Can chiplets save the semiconductor supply chain?

Navigating the EU Cyber Resilience Act: a manufacturer’s perspective

The intelligent Edge: powering next-gen Edge AI applications

Engineering harmony: solving the multiprotocol puzzle in IoT device design

What’s slowing down Edge AI? It’s not compute, it’s data movement

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Connectivity
AI and high-performance computing demand interconnects that can handle massive data throughput without bottlenecks. This Tech Toolbox explores the connector technologies enabling ML systems, from high-speed board-to-board and PCIe interfaces to in-package optical interconnects and twin-axial assemblies.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2026 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy