• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

Random number generator software targets IoT devices

September 29, 2021 By Aimee Kalnoskas Leave a Comment

Intrinsic ID  announced Zign RNG, a new offering enabling IoT chip providers and device makers to establish a high-security random number generator in software enabling it to be deployed on devices even after silicon fabrication to ensure a true source of randomness for IoT devices.

Random number generators (RNGs) are essential for cryptographic applications and form the foundation of security systems. For IoT devices, an RNG is generally implemented by incorporating hardware peripheral controllers, which are proving to be imperfect as a source for real randomness because they start with a deterministic input. A report from Bishop Fox shows critical vulnerabilities have been disclosed in hardware random number generators used in billions of Internet of Things (IoT) devices whereby it fails to properly generate random numbers, thus undermining their security and putting them at risk of attacks.

The Intrinsic ID Zign RNG extracts a true random seed harvested from noise in the SRAM PUF enabling IoT device makers to ensure confidentiality, authentication, and communication integrity. This makes Zign RNG the first and only embedded software implementation with a hardware entropy source option that does not have to be loaded at silicon fabrication. Zign RNG can be installed later in the supply chain, and even retrofitted on already-deployed devices. This provides a never-before-possible “brownfield” deployment of a cryptographically secure NIST-certified RNG.

The Zign RNG product is compliant with the NIST SP 800-90 standard. It implements a deterministic random bit generator (DRBG) as specified in NIST SP 800-90A. This means that a strong RNG solution in software is created on top of an existing SRAM memory.

Zign RNG has passed all standard national institute of standards and technology (NIST) randomness tests and is a NIST/FIPS-compliant software solution that addresses the issue of Hardware RNG peripherals used in IoT devices running out of entropy and leaving the device vulnerable.

Zign RNG is available immediately and is ideally suited for anyone making devices or chips for IoT. Zign RNG can be implemented at any stage of a device’s lifecycle, even after a device is already created and/or deployed in the field.

You may also like:


  • Keeping digital health safe and secure with unforgeable cyber protection

  • Applications and algorithms for quantum computing
  •  Merging quantum and classical computing
     Merging quantum and classical computing in a hybrid system
  • quantum computing system architectures
    Quantum computing system architectures

  • What are the basics of quantum computing?

Filed Under: Applications, IoT, Security Tagged With: intrinsyctechnologiescorporation

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Engineering harmony: solving the multiprotocol puzzle in IoT device design

What’s slowing down Edge AI? It’s not compute, it’s data movement

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: EMC/EMI
EE World has assembled a collection of articles that demonstrate how to measure emissions with simple antennas. We include a review of a handheld spectrum analyzer. We also look at EMC issues with IoT devices.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy