• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

Software machine learning development environment targets ADAS, next-gen auto apps

October 8, 2019 By Aimee Kalnoskas Leave a Comment

NXP Semiconductors N.V. has expanded its eIQ software machine learning (ML) development environment with its automotive-grade deep learning toolkit, eIQ Auto. The toolkit aims to help customers move quickly from a development environment to AI application implementations that meet stringent automotive standards. eIQ Auto enables the application of deep learning-based algorithms to vision, driver replacement, sensor fusion, driver monitoring and other evolving automotive applications.

The eIQ Auto toolkit allows customers to develop for automotive production on desktop/cloud/GPU environments and to deploy their neural network onto a supported S32 processor. NXP’s toolkit and automotive-grade inference engine enable easier deployment of neural networks in applications with intensive safety requirements. A good example is speeding up the transition from traditional computer vision algorithms to deep learning-based algorithms in vision-based systems.

eIQ AutoDeep Learning holds the promise of delivering better accuracy and better maintainability in object detection and classification over “traditional” computer vision algorithms, but the barriers to full automotive implementation bring complexity and steep costs.

The eIQ Auto toolkit aims to help customers reduce time to market by lowering the investment costs required to select and program embedded compute engines for each layer of a deep learning algorithm. The automated selection process leads to 30 times higher performance for given models compared to other embedded deep learning frameworks. This performance is achieved by optimizing the use of available resources and reducing time and development effort1. These dividends allow developers to evaluate, fine-tune and deploy their applications for maximized overall performance.

Compliance with automotive-grade development standards and Functional Safety requirements are key benefits of eIQ Auto and S32V integration. eIQ Auto’s inference engine was developed in accordance with stringent requirements and is Automotive SPICE® compliant. The S32V processors offer the highest levels of functional safety supporting ISO 26262 up to ASIL-C, IEC 61508, and DO 178.

Together, NXP’s eIQ Auto Deep Learning toolkit and automotive qualified S32V provide a strong foundation of performance, safety and quality for next generation automotive applications.

NXP eIQ Auto Toolkit Includes:

  • Multiple execution options supported with unified API and runtime backend selection
  • A-SPICE compliant inference engine that can optimize performance by scheduling tasks on the most efficient accelerator
  • Support for state-of-the-art CNNs/Networks
  • Library of optimized layers and networks

The NXP eIQ machine learning software development environment enables the use of ML algorithms on NXP MCUs, i.MX RT crossover MCUs, and i.MX family SoCs. eIQ software and eIQ Auto toolkit include inference engines, neural network compilers, and optimized libraries.

Filed Under: Applications, Artificial intelligence, Automotive, Machine learning, Software, Tools Tagged With: nxpsemiconductors

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

What’s new with Matter: how Matter 1.4 is reshaping interoperability and energy management

Edge AI: Revolutionizing real-time data processing and automation

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy