• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • Automotive
    • Connectivity
    • Consumer Electronics
    • Industrial
    • Medical
    • Security
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Videos
    • TI Microcontroller Videos
  • EE Resources
    • DesignFast
    • eBooks / Tech Tips
    • FAQs
    • LEAP Awards
    • Podcasts
    • Webinars
    • White Papers
  • EE Learning Center

Thin-film common-mode filters for mobile devices

August 31, 2021 By Redding Traiger

TDK Corporation has developed the TCM0403M Series of miniaturized thin-film common-mode filters for mobile devices. The 0403 case size (0.45 x 0.3 x 0.23 mm) is 58 % smaller and 56 % lighter than previous products. With their high common-mode attenuation characteristic, these products reduce intruding noise and improve wireless signal reception sensitivity. The common-mode attenuation at 2.4 GHz is 21 dB, and 28 dB at 5.0 GHz, with a maximum permissible current of 50 mA. Mass production started in August 2021.

Due to the growing multifunctionality of wireless devices such as smartphones, wearables, and other mobile products, noises generated inside the devices are deteriorating wireless signals. It is critical to prevent the deterioration of signal reception sensitivity and to prevent external noise that has the potential to cause device malfunction; this series addresses those common challenges.

The products are mountable in ultra-small spaces due to their 58 % footprint reduction, which was previously impossible with the existing TCM0605 Series (0.65 x 0.5 mm case size). By improving TDK’s proprietary fine pattern technology and optimizing design, the products feature a common-mode attenuation characteristic that equals existing products and a differential transmission characteristic capable of supporting high-speed signal transmission.

TDK’s wide array of products meets the needs for common filters for high-speed differential signal lines, including for USB, MIPI, and HDMI.

You may also like:

  • automotive qualification
    What does automotive qualification mean?

  • How does RISC-V fit into automotive systems?

  • What is the RISC-V ecosystem?
  • FPGAs
    What are the application considerations when selecting FPGAs?
  • DDR SDRAM
    What is DDR (Double Data Rate) Memory and SDRAM memory?

Filed Under: Applications, Consumer Electronics, Wearables, Wireless Tagged With: tdkcorporation

Primary Sidebar

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

EE Training Center Classrooms

EE Classrooms

CURRENT DIGITAL ISSUE

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Subscribe to our Newsletter

Subscribe to weekly industry news, new product innovations and more.

Subscribe today

RSS Current EDABoard.com discussions

  • USB hub IC heatup
  • Resistor across crystal for biasing the internal op-amp
  • Photovoltaic MOSFET Drivers - Voltage Rating
  • A circuit that can adjust a resistance and probing a voltage node
  • Modeling Parallel Wire Transmission Line

RSS Current Electro-Tech-Online.com Discussions

  • Setting the 18F24K20 to digital.
  • Multistage BJT amplifier
  • Ampro 16mm Stylist projector woes.
  • Need help using a common power supply for two devices
  • NXP i.MX8 board vs Raspberry Pi?

Footer

Microcontroller Tips

EE World Online Network

  • DesignFast
  • EE World Online
  • EDA Board Forums
  • Electro Tech Online Forums
  • Connector Tips
  • Analog IC Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire and Cable Tips
  • 5G Technology World

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Follow us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy