• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Microcontroller Tips

Microcontroller engineering resources, new microcontroller products and electronics engineering news

  • Products
    • 8-bit
    • 16-bit
    • 32-bit
    • 64-bit
  • Applications
    • 5G
    • Automotive
    • Connectivity
    • Consumer Electronics
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Security
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Resources
    • Design Guide Library
    • DesignFast
    • LEAP Awards
    • Podcasts
    • White Papers
  • Videos
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineering Training Days
  • Advertise
  • Subscribe

What are the four types of machine learning, and what are they used for?

December 11, 2023 By Jeff Shepard Leave a Comment

Machine learning (ML) is a subset of artificial intelligence (AI). It’s used to enable machines to independently improve their performance using data and experience to modify future actions. ML applications range from autonomous vehicles to business processes. Various approaches to ML use different learning styles, require different levels of data input, and are optimized for specific types of tasks.

Regardless of the style of learning, once the system has been trained, it’s expected to operate autonomously. The four most common approaches to ML are supervised learning, unsupervised learning, semi-supervised learning, and reinforced learning (Figure 1).

Figure 1. Four ML types and some exemplary use cases (Image: JavaPoint).

Supervised learning
In supervised learning, the machine is taught using labeled datasets. The operator provides the machine learning algorithm with an example dataset that includes expected inputs and outputs. The algorithm identifies a method to determine how to use the supplied inputs to arrive at the expected outputs, and the operator corrects any errors. Supervised learning is an iterative process where the predictions by the algorithm are expected to be closer and closer to the expected result. The learning process continues until the required level of accuracy has been achieved.

Supervised learning relies on accurately labeled datasets that include a sufficient level of detail. This type of learning has two primary uses, classification and predicting continuous outcomes:

  • Classification models are trained to identify data types. Some applications include identifying spam emails, facial identification, and image recognition.
  • Prediction models are trained to identify patterns within a dataset. Prediction models are used for forecasting retail sales, stock trading applications, healthcare, and advertising planning to predict the value of specific ad spaces or programs.

Semi-supervised learning
Semi-supervised learning uses a combination of labeled and unlabeled datasets. It begins with supervised learning using a labeled dataset. Next, the clustering process is used in unsupervised learning to group the unlabeled dataset. Semi-supervised learning is especially useful when large datasets are involved, and it would be too costly to manually analyze the categorize all the data. Examples can include large amounts of text data from large groups of images.

There are several common uses for semi-supervised learning:

  • Grouping text documents like books, legal briefs, technical reports, and so on.
  • Categorizing large libraries of image or audio files when an adequate sample of labeled data is available.

Unsupervised learning
In this case, the ML algorithm independently analyzes large quantities of data to identify patterns. The algorithm is designed to organize the data in some way that describes its structure. Common analysis techniques include:

Clustering that groups sets of similar data (based on specified criteria). It’s used to organize data into multiple smaller datasets and analyze each of the smaller datasets to find patterns.

Dimension reduction literally reduces the number of variables being considered to find the exact information required. It can be used to refine clusters. And it delivers a simplified model that can be more efficient to implement.

Visualization can be used to create charts and graphs. Data visualization can also incorporate clustering to develop different smaller datasets that are then used to plot data across two or more dimensions. Data visualization can be especially useful to assist human analysis in digging deeper into complex datasets.

Reinforcement learning
Reinforcement learning is inherently different from the other types of ML reviewed above. Reinforcement learning does not require a training dataset; it learns by interacting with the environment. The process involves a feedback loop where successful outcomes are rewarded or reinforced, and failures get a negative signal. The system learns by trial and error to arrive at the best possible outcome.

A common reinforcement learning technique involves the Markov Decision Process (MDP). MDP can be used to model decision-making and learning in situations where outcomes are partly controlled and partly random.

The development of autonomous cars is an example of reinforcement learning. The car learns the best course of action from its environment, but the outcome is only partly under the control of the system. There are numerous independent external factors that also need to be considered. That type of environment is well suited to using MDP for decision-making.

Beyond the basics
The four types of machine learning described above are not an exhaustive list. They only cover some of the basics. There are many other approaches (Figure 2). For example, a deductive learning model is based on a series of logical principles and steps, while inductive ML is based on using examples or observations for training. Multi-task learning is a variation of inductive learning in which multiple learning tasks are solved simultaneously while also taking advantage of commonalities and differences between the tasks. Multiple instance learning is a subset of supervised learning where subsets of the primary dataset are grouped under a single label.

Figure 2. There are numerous approaches to ML beyond the basic four detailed in this FAQ (Image: Nixus).

Summary
ML is an important subset of artificial intelligence. It’s used across a wide range of applications, and multiple techniques have been developed for training ML algorithms depending on the quantity and quality of the available training dataset.

References
A guide to the types of machine learning algorithms and their applications, SAS
Four Types of Machine Learning Algorithms Explained, Seldon
Types of Machine Learning, JavaPoint
Types Of Machine Learning, Nixus

You may also like:


  • What are the top five neural network architectures?

  • What’s a quantum sensor?

  • What are the top programming languages for machine learning?
  • artificial intelligence
    Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing

  • What is machine learning?

Filed Under: Artificial intelligence, FAQ, Featured, Machine learning Tagged With: FAQ

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Securing IoT devices against quantum computing risks

RISC-V implementation strategies for certification of safety-critical systems

What’s new with Matter: how Matter 1.4 is reshaping interoperability and energy management

Edge AI: Revolutionizing real-time data processing and automation

More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center

EE ENGINEERING TRAINING DAYS

engineering
“bills
“microcontroller
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

RSS Current EDABoard.com discussions

  • Elektronik devre
  • Powering a USB hub: safely distributing current from a shared power supply
  • RF-DC rectifier impedance matching
  • How can I get the frequency please help!
  • 12VAC to 12VDC 5A on 250ft 12AWG

RSS Current Electro-Tech-Online.com Discussions

  • 100uF bypass Caps?
  • Fuel Auto Shutoff
  • Actin group needed for effective PCB software tutorials
  • how to work on pcbs that are thick
  • compatible eth ports for laptop

DesignFast

Design Fast Logo
Component Selection Made Simple.

Try it Today
design fast globle

Footer

Microcontroller Tips

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

Microcontroller Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy